Please note our website will be undergoing maintenance on Tuesday, May 28, 2024. e-Commerce transactions and new registrations will be temporarily unavailable during this time. We apologize for any inconvenience this may cause.
Open access

New considerations in hematopoietic stem cell transplantation for severe combined immunodeficiency: how did newborn screening change our field, and can we finally brake the glass ceiling for haploidentical transplantation?

Publication: LymphoSign Journal
27 August 2019

Abstract

Pioneered in 1968, hematopoietic stem cell transplantation (HSCT) first cured a patient with severe combined immune deficiency (SCID) transplanted from a matched sibling, bringing hope for this previously fatal disease. Since then, HSCT has become the standard of care treatment for SCID with thousands of patients transplanted successfully worldwide. Initially successful mainly in patients with a matched sibling donor and in specific easier to transplant types of SCID, nowadays, most patients with SCID undergo successful transplantation due to HSCT technique advances. These include refined human leukocyte antigen (HLA)-tissue typing, use of alternative donors, availability of new stem cell sources such as umbilical cord blood, less toxic chemotherapeutic conditioning, as well as improved graft-versus-host disease (GvHD) prophylaxis. Other factors contributing to the success of transplantation include the improvement of supportive care by molecular detection of viral infections, enabling preemptive antiviral treatment before organ damage occurs. Increased awareness for primary immunodeficiency disorders (PID), leading to earlier diagnosis and referral to specialist centers, has been another important factor in successfully transplanting SCID patients. A major game changer in the last decade has been the implementation of neonatal screening for SCID. This increased early diagnosis, allowing for this disease to be almost universally diagnosed soon after birth in countries which included this test in their newborn screening program. As a result, early and optimal transplant timing and conditions could be achieved. However, very early diagnosis also raised new questions regarding SCID patients with a “leaky” phenotype, as well as dilemmas regarding transplant and conditioning regimens in very young infants. With improved diagnosis and treatment options, overall survival has increased to over 90% for SCID babies with a genoidentical donor and similar results are emerging for matched unrelated donor HSCT. Due to new advances, we hope to achieve similar results for those given HSCT from haploidentical donors as well. This review will focus on the new considerations in HSCT seen in recent years, and examines the effect they have had on treatment options and outcomes for SCID patients.
Statement of novelty: The field of HSCT has advanced considerably since the first successful SCID bone marrow transplant in 1968. However, success rates have been limited due to delayed diagnosis and poor outcome of patients for which a HLA-matched donor could not be found. This review will discuss recent advances occurring in the last decade in HSCT for SCID, and our hopes to bring cure to this once fatal disease.

Formats available

You can view the full content in the following formats:

REFERENCES

Antoine C., Müller S., Cant A., Cavazzana-Calvo M., Veys P., Vossen J., Fasth A., Heilmann C., Wulffraat N., Seger R., Blanche S., Friedrich W., Abinun M., Davies G., Bredius R., Schulz A., Landais P., and Fischer A. 2003. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: Report of the European experience 1968–99. Lancet. 361(9357):553–560.
Baker M.W., Grossman W.J., Laessig R.H., Hoffman G.L., Brokopp C.D., Kurtycz D.F., Cogley M.F., Litsheim T.J., Katcher M.L., and Routes J.M. 2009. Development of a routine newborn screening protocol for severe combined immunodeficiency. J. Allergy Clin. Immunol. 124(3):522–527.
Balashov D., Shcherbina A., Maschan M., Trakhtman P., Skvortsova Y., Shelikhova L., Laberko A., Livshits A., Novichkova G., and Maschan A. 2015. Single-center experience of unrelated and haploidentical stem cell transplantation with TCRαβ and CD19 depletion in children with primary immunodeficiency syndromes. Biol. Blood Marrow Transplant. 21(11):1955–1962.
Berenbaum M.C. and Brown I.N. 1964. Dose-response relationships for agents inhibiting the immune response. Immunology. 7:65–71.
Bertrand Y., Landais P., Friedrich W., Gerritsen B., Morgan G., Fasth A., Cavazzana-Calvo M., Porta F., Cant A., Espanol T., Müller S., Veys P., Vossen J., Haddad E., and Fischer A. 1999. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell-depleted bone marrow transplantation: A retrospective European survey from the European Group for Bone Marrow Transplantation and the European Society for Immunodeficiency. J. Pediatr. 134:740–748.
Bollard C.M. and Heslop H.E. 2016. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 127:3331–3340.
Brown L., Xu-Bayford J., Allwood Z., Slatter M., Cant A., Davies E.G., Veys P., Gennery A.R., and Gaspar H.B. 2011. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: The case for newborn screening. Blood. 117(11):3243–3246.
de Witte T., Hoogenhout J., de Pauw B., Holdrinet R., Janssen J., Wessels J., van Daal W., Hustinx T., and Haanen C. 1986. Depletion of donor lymphocytes by counterflow centrifugation successfully prevents acute graft-versus-host disease in matched allogeneic marrow transplantation. Blood. 67:1302–1308.
Gennery A.R. 2015. Recent advances in treatment of severe primary immunodeficiencies [version 1; peer review: 2 approved]. F1000Res. 4(F1000 Faculty Rev):1459.
Gennery A.R., Dickinson A.M., Brigham K., Barge D., Spickett G.P., Curtis A., Spencer V., Jackson A., Cavanagh G., Carter V., Palmer P., Flood T.J., Cant A.J., and Abinun M. 2001. CAMPATH-1M T-cell depleted BMT for SCID: Long-term follow-up of 19 children treated 1987–98 in a single center. Cytotherapy. 3:221–232.
Grunebaum E. and Roifman C.M. 2011. Bone marrow transplantation using HLA-matched unrelated donors for patients suffering from severe combined immunodeficiency. Hematol. Oncol. Clin. North Am. 25(1):63–73.
Grunebaum E., Mazzolari E., Porta F., Dallera D., Atkinson A., Reid B., Notarangelo L.D., and Roifman C.M. 2006. Bone marrow transplantation for severe combined immune deficiency. JAMA. 295(5):508–518.
Heimall J., Puck J., Buckley R.H., Fleisher T.A., Gennery A.R., Neven B., Slatter M., Haddad E., Notarangelo L., Baker K.S., Dietz A.C., Duncan C., Pulsipher M.A., and Cowan M.J. 2017. Current knowledge and priorities for future research in late effects after hematopoietic stem cell transplantation (HCT) for severe combined immunodeficiency patients: A consensus statement from the Second Pediatric Blood and Marrow Transplant Consortium International Conference on Late Effects after Pediatric HCT. Biol. Blood Marrow Transplant. 23(3):379–387.
Heiman S., Weil M., Shulman L.M., Simon A.J., Lev A., Somech R., and Stauber T. 2018. Co-appearance of OPV and BCG vaccine-derived complications in two infants with severe combined immunodeficiency. Immunol. Res. 66(3):437–443.
Kanakry C.G., O’Donnell P.V., Furlong T., de Lima M.J., Wei W., Medeot M., Mielcarek M., Champlin R.E., Jones R.J., Thall P.F., Andersson B.S., and Luznik L. 2014. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J. Clin. Oncol. 32:3497–3505.
Kwan A., Abraham R.S., Currier R., Brower A., Andruszewski K., Abbott J.K., Baker M., Ballow M., Bartoshesky L.E., Bonilla F.A., Brokopp C., Brooks E., Caggana M., Celestin J., Church J.A., Comeau A.M., Connelly J.A., Cowan M.J., Cunningham-Rundles C., Dasu T., Dave N., De La Morena M.T., Duffner U., Fong C.T., Forbes L., Freedenberg D., Gelfand E.W., Hale J.E., Hanson I.C., Hay B.N., Hu D., Infante A., Johnson D., Kapoor N., Kay D.M., Kohn D.B., Lee R., Lehman H., Lin Z., Lorey F., Abdel-Mageed A., Manning A., McGhee S., Moore T.B., Naides S.J., Notarangelo L.D., Orange J.S., Pai S.Y., Porteus M., Rodriguez R., Romberg N., Routes J., Ruehle M., Rubenstein A., Saavedra-Matiz C.A., Scott G., Scott P.M., Secord E., Seroogy C., Shearer W.T., Siegel S., Silvers S.K., Stiehm E.R., Sugerman R.W., Sullivan J.L., Tanksley S., Tierce M.L. IV, Verbsky J., Vogel B., Walker R., Walkovich K., Walter J.E., Wasserman R.L., Watson M.S., Weinberg G.A., Weiner L.B., Wood H., Yates A.B., Puck J.M., and Bonagura V.R. 2014. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 312(7):729–738.
Marciano B.E., Huang C.Y., Joshi G., Rezaei N., Carvalho B.C., Allwood Z., Ikinciogullari A., Reda S.M., Gennery A., Thon V., Espinosa-Rosales F., Al-Herz W., Porras O., Shcherbina A., Szaflarska A., Kiliç Ş., Franco J.L., Gómez Raccio A.C., Roxo P. Jr., Esteves I., Galal N., Grumach A.S., Al-Tamemi S., Yildiran A., Orellana J.C., Yamada M., Morio T., Liberatore D., Ohtsuka Y., Lau Y.L., Nishikomori R., Torres-Lozano C., Mazzucchelli J.T., Vilela M.M., Tavares F.S., Cunha L., Pinto J.A., Espinosa-Padilla S.E., Hernandez-Nieto L., Elfeky R.A., Ariga T., Toshio H., Dogu F., Cipe F., Formankova R., Nuñez-Nuñez M.E., Bezrodnik L., Marques J.G., Pereira M.I., Listello V., Slatter M.A., Nademi Z., Kowalczyk D., Fleisher T.A., Davies G., Neven B., and Rosenzweig S.D. 2014. BCG vaccination in patients with severe combined immunodeficiency: Complications, risks, and vaccination policies. J. Allergy Clin. Immunol. 133(4):1134–1141.
Marsh R.A., Lane A., Mehta P.A., Neumeier L., Jodele S., Davies S.M., and Filipovich A.H. 2016. Alemtuzumab levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following alemtuzumab, fludarabine, and melphalan RIC HCT. Blood. 127:503–512.
Mazzolari E., Forino C., Guerci S., Imberti L., Lanfranchi A., Porta F., and Notarangelo L.D. 2007. Long-term immune reconstitution and clinical outcome after stem cell transplantation for severe T-cell immunodeficiency. J. Allergy Clin. Immunol. 120(4):892–899.
Morinishi Y., Imai K., Nakagawa N., Sato H., Horiuchi K., Ohtsuka Y., Kaneda Y., Taga T., Hisakawa H., Miyaji R., Endo M., Oh-Ishi T., Kamachi Y., Akahane K., Kobayashi C., Tsuchida M., Morio T., Sasahara Y., Kumaki S., Ishigaki K., Yoshida M., Urabe T., Kobayashi N., Okimoto Y., Reichenbach J., Hashii Y., Tsuji Y., Kogawa K., Yamaguchi S., Kanegane H., Miyawaki T., Yamada M., Ariga T., and Nonoyama S. 2009. Identification of severe combined immunodeficiency by T-cell receptor excision circles quantification using neonatal guthrie cards. J. Pediatr. 155(6):829–833.
Myers L.A., Patel D.D., Puck J.M., and Buckley R.H. 2002. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 99(3):872–878.
Neven B., Diana J.S., Castelle M., Magnani A., Rosain J., Touzot F., Moreira B., Fremond M.L., Briand C., Bendavid M., Levy R., Morelle G., Vincent M., Magrin E., Bourget P., Chatenoud L., Picard C., Fischer A., Moshous D., and Blanche S. 2019. Haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for primary immunodeficiencies and inherited disorders in children. Biol. Blood Marrow Transplant. 25(7):1363–1373.
O’Reilly R.J., Dupont B., Pahwa S., Grimes E., Smithwick E.M., Pahwa R., Schwartz S., Hansen J.A., Siegal F.P., Sorell M., Svejgaard A., Jersild C., Thomsen M., Platz P., L’Esperance P., and Good R.A. 1977. Reconstitution in severe combined immunodeficiency by transplantation of marrow from an unrelated donor. N. Engl. J. Med. 297(24):1311–1318.
Pai S.Y., Logan B.R., Griffith L.M., Buckley R.H., Parrott R.E., Dvorak C.C., Kapoor N., Hanson I.C., Filipovich A.H., Jyonouchi S., Sullivan K.E., Small T.N., Burroughs L., Skoda-Smith S., Haight A.E., Grizzle A., Pulsipher M.A., Chan K.W., Fuleihan R.L., Haddad E., Loechelt B., Aquino V.M., Gillio A., Davis J., Knutsen A., Smith A.R., Moore T.B., Schroeder M.L., Goldman F.D., Connelly J.A., Porteus M.H., Xiang Q., Shearer W.T., Fleisher T.A., Kohn D.B., Puck J.M., Notarangelo L.D., Cowan M.J., and O’Reilly R.J. 2014. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N. Engl. J. Med. 371(5):434–446.
Patel N.C., Hertel P.M., Estes M.K., de la Morena M., Petru A.M., Noroski L.M., Revell P.A., Hanson I.C., Paul M.E., Rosenblatt H.M., and Abramson S.L. 2010. Vaccine-acquired rotavirus in infants with severe combined immunodeficiency. N. Engl. J. Med. 362(4):314–319.
Rechavi E., Lev A., Simon A.J., Stauber T., Daas S., Saraf-Levy T., Broides A., Nahum A., Marcus N., Hanna S., Stepensky P., Toker O., Dalal I., Etzioni A., Almashanu S., and Somech R. 2017. First year of Israeli newborn screening for severe combined immunodeficiency—Clinical achievements and insights. Front. Immunol. 8:1448.
Reisner Y., Kapoor N., Kirkpatrick D., Pollack M.S., Dupont B., Good R.A., and O’Reilly R.J. 1981. Transplantation for acute leukaemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet. 318:327–331.
Roifman C.M., Grunebaum E., Dalal I., and Notarangelo L. 2007. Matched unrelated bone marrow transplant for severe combined immunodeficiency. Immunol. Res. 38(1–3):191–200.
Shah R.M., Elfeky R., Nademi Z., Qasim W., Amrolia P., Chiesa R., Rao K., Lucchini G., Silva J.M.F., Worth A., Barge D., Ryan D., Conn J., Cant A.J., Skinner R., Abd Hamid I.J., Flood T., Abinun M., Hambleton S., Gennery A.R., Veys P., and Slatter M. 2018. T-cell receptor αβ+ and CD19+ cell-depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. J. Allergy Clin. Immunol. 141(4):1417–1426.e1.
Slatter M.A. and Gennery A.R. 2017. Approaches to the removal of T-lymphocytes to minimize graft-versus-host disease in patients with primary immunodeficiencies who do not have a matched sibling donor. Curr. Opin. Allergy Clin. Immunol. 17(6):414–420.
Sponzilli I. and Notarangelo L.D. 2011. Severe combined immunodeficiency (SCID): From molecular basis to clinical management. Acta Biomed. 82(1):5–13.
Thakar M.S., Hintermeyer M.K., Gries M.G., Routes J.M., and Verbsky J.W. 2017. A practical approach to newborn screening for severe combined immunodeficiency using the T cell receptor excision circle assay. Front. Immunol. 8:1470.
Touzot F., Neven B., Dal-Cortivo L., Gabrion A., Moshous D., Cros G., Chomton M., Luby J.M., Terniaux B., Magalon J., Picard C., Blanche S., Fischer A., and Cavazzana M. 2015. CD45RA depletion in HLA-mismatched allogeneic hematopoietic stem cell transplantation for primary combined immunodeficiency: A preliminary study. J. Allergy Clin. Immunol. 135:1303–1309.e3.
Volk T., Pannicke U., Reisli I., Bulashevska A., Ritter J., Björkman A., Schäffer A.A., Fliegauf M., Sayar E.H., Salzer U., Fisch P., Pfeifer D., Di Virgilio M., Cao H., Yang F., Zimmermann K., Keles S., Caliskaner Z., Güner S.Ü., Schindler D., Hammarström L., Rizzi M., Hummel M., Pan-Hammarström Q., Schwarz K., and Grimbacher B. 2015. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency. Hum. Mol. Genet. 24(25):7361–7372.

Information & Authors

Information

Published In

cover image LymphoSign Journal
LymphoSign Journal
Volume 6Number 3September 2019
Pages: 87 - 94

History

Received: 8 July 2019
Accepted: 31 July 2019
Accepted manuscript online: 27 August 2019

Authors

Affiliations

Nufar Marcus [email protected]
Department of Pediatrics, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
Kipper Institute of Immunology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to LymphoSign Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media