Please note our website will be undergoing maintenance on Tuesday, May 28, 2024. e-Commerce transactions and new registrations will be temporarily unavailable during this time. We apologize for any inconvenience this may cause.
Open access

Microbiota-immune interactions: from gut to brain

Publication: LymphoSign Journal
27 January 2020

Abstract

The vast diversity of bacteria that inhabit the gastrointestinal tract strongly influence host physiology, not only nutrient metabolism but also immune system development and function. The complexity of the microbiota is matched by the complexity of the host immune system, where they have coevolved to maintain homeostasis ensuring the mutualistic host-microbial relationship. Numerous studies in recent years investigating the gut-brain axis have demonstrated an important role for the gut microbiota in modulating brain development and function, with the immune system serving as an important coordinator of these interactions. Gut bacteria can modulate not only gut-resident immune cells but also brain-resident immune cells. Activation of the immune system in the gut and in the brain are implicated in responses to neuroinflammation, brain injury, as well as changes in neurogenesis and plasticity. Impairments in this bidirectional communication are implicated in the etiopathogenesis of psychiatric and neurodevelopmental diseases and disorders, including autism spectrum disorders, or comorbidities associated with Gastrointestinal diseases, including inflammatory bowel diseases, where dysbiosis is commonly seen. Consequently, probiotics, or beneficial microbes, are being recognized as promising therapeutic targets to modulate behavior and brain development by modulating the gut microbiota. Here we review the role of microbiota-immune interactions in the gut and the brain during homeostasis and disease and their impact on gut-brain communication, brain function, and behavior as well as the use of probiotics in central nervous system alterations.
Statement of novelty: The microbiota-gut-brain axis is increasingly recognized as an important physiological pathway for maintaining health and impacting the brain and central nervous system. Increasing evidence suggests that the immune system is crucial for gut-brain signaling. In this review, we highlight the critical studies in the literature that identify the key immune pathways involved.

Formats available

You can view the full content in the following formats:

REFERENCES

Aimone J.B., Li Y., Lee S.W., Clemenson G.D., Deng W., and Gage F.H. 2014. Regulation and function of adult neurogenesis: From genes to cognition. Physiol. Rev. 94:991–1026.
Ait-Belgnaoui A., Colom A., Braniste V., Ramalho L., Marrot A., Cartier C., Houdeau E., Theodorou V., and Tompkins T. 2014. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil. 26:510–520.
Alboni S. and Maggi L. 2015. Editorial: Cytokines as players of neuronal plasticity and sensitivity to environment in healthy and pathological brain. Front. Cell. Neurosci. 9:508.
Allen A.P., Hutch W., Borre Y.E., Kennedy P.J., Temko A., Boylan G., Murphy E., Cryan J.F., Dinan T.G., and Clarke G. 2016. Bifidobacterium longum 1714 as a translational psychobiotic: Modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry. 6:e939.
Araki A., Kanai T., Ishikura T., Makita S., Uraushihara K., Iiyama R., Totsuka T., Takeda K., Akira S., and Watanabe M. 2005. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J. Gastroenterol. 40:16–23.
Arseneault-Breard J., Rondeau I., Gilbert K., Girard S.A., Tompkins T.A., Godbout R., and Rousseau G. 2012. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br. J. Nutr. 107:1793–1799.
Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K., Hori S., Ivanov I.I., Umesaki Y., Itoh K., and Honda K. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 331:337–341.
Barrientos R.M., Higgins E.A., Sprunger D.B., Watkins L.R., Rudy J.W., and Maier S.F. 2002. Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav. Brain Res. 134:291–298.
Barrientos R.M., Frank M.G., Hein A.M., Higgins E.A., Watkins L.R., Rudy J.W., and Maier S.F. 2009. Time course of hippocampal IL-1 beta and memory consolidation impairments in aging rats following peripheral infection. Brain Behav. Immun. 23:46–54.
Bauer H., Horowitz R.E., Levenson S.M., and Popper H. 1963. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol. 42:471–483.
Belkaid Y. and Hand T.W. 2014. Role of the microbiota in immunity and inflammation. Cell. 157:121–141.
Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., Sita G., Racchumi G., Ling L., Pamer E.G., Iadecola C., and Anrather J. 2016. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22:516–523.
Benckert J., Schmolka N., Kreschel C., Zoller M.J., Sturm A., Wiedenmann B., and Wardemann H. 2011. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121:1946–1955.
Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K.D., Verdu E.F., and Collins S.M. 2011a. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 141:599–609.
Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J., Huang X., Deng Y., Blennerhassett P.A., Fahnestock M., Moine D., Berger B., Huizinga J.D., Kunze W., McLean P.G., Bergonzelli G.E., Collins S.M., and Verdu E.F. 2011b. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23:1132–1139.
Boissé L., Mouihate A., Ellis S., and Pittman Q.J. 2004. Long-term alterations in neuroimmune responses after neonatal exposure to lipopolysaccharide. J. Neurosci. 24:4928–4934.
Borruel N., Carol M., Casellas F., Antolin M., De Lara F., Espin E., Naval J., Guarner F., and Malagelada J.R. 2002. Increased mucosal tumour necrosis factor alpha production in Crohn’s disease can be downregulated ex vivo by probiotic bacteria. Gut. 51:659–664.
Bouskra D., Brézillon C., Bérard M., Werts C., Varona R., Boneca I.G., and Eberl G. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 456:507–510.
Brandl K., Plitas G., Schnabl B., DeMatteo R.P., and Pamer E.G. 2007. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204:1891–1900.
Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Korecka A., Bakocevic N., Ng L.G., Kundu P., Gulyás B., Halldin C., Hultenby K., Nilsson H., Hebert H., Volpe B.T., Diamond B., and Pettersson S. 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6:263ra158.
Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., and Cryan J.F. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 108:16050–16055.
Breit S., Kupferberg A., Rogler G., and Hasler G. 2018. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry. 9:44.
Brown A.J., Goldsworthy S.M., Barnes A.A., Eilert M.M., Tcheang L., Daniels D., Muir A.I., Wigglesworth M.J., Kinghorn I., Fraser N.J., Pike N.B., Strum J.C., Steplewski K.M., Murdock P.R., Holder J.C., Marshall F.H., Szekeres P.G., Wilson S., Ignar D.M., Foord S.M., Wise A., and Dowell S.J. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312–11319.
Buffington S.A., Di Prisco G.V., Auchtung T.A., Ajami N.J., Petrosino J.F., and Costa-Mattioli M. 2016. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 165:1762–1775.
Bunker J.J. and Bendelac A. 2018. IgA responses to microbiota. Immunity. 49:211–224.
Bunker J.J., Flynn T.M., Koval J.C., Shaw D.G., Meisel M., McDonald B.D., Ishizuka I.E., Dent A.L., Wilson P.C., Jabri B., Antonopoulos D.A., and Bendelac A. 2015. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity. 43:541–553.
Cai Z., Pan Z.L., Pang Y., Evans O.B., and Rhodes P.G. 2000. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr. Res. 47:64–72.
Carabotti M., Scirocco A., Maselli M.A., and Severi C. 2015. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28:203–209.
Caricilli A.M., Castoldi A., and Camara N.O. 2014. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World J. Gastrointest. Pathophysiol. 5:18–32.
Catorce M.N. and Gevorkian G. 2016. LPS-induced murine neuroinflammation model: Main features and suitability for pre-clinical assessment of nutraceuticals. Curr. Neuropharmacol. 14:155–164.
Ceccarelli G., Fratino M., Selvaggi C., Giustini N., Serafino S., Schietroma I., Corano Scheri G., Pavone P., Passavanti G., Alunni Fegatelli D., Mezzaroma I., Antonelli G., Vullo V., Scagnolari C., and d’Ettorre G. 2017. A pilot study on the effects of probiotic supplementation on neuropsychological performance and microRNA-29a-c levels in antiretroviral-treated HIV-1-infected patients. Brain Behav. 7:e00756.
Chesnokova V., Pechnick R.N., and Wawrowsky K. 2016. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav. Immun. 58:1–8.
Chung H., Pamp S.J., Hill J.A., Surana N.K., Edelman S.M., Troy E.B., Reading N.C., Villablanca E.J., Wang S., Mora J.R., Umesaki Y., Mathis D., Benoist C., Relman D.A., and Kasper D.L. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 149:1578–1593.
Cosorich I., Dalla-Costa G., Sorini C., Ferrarese R., Messina M.J., Dolpady J., Radice E., Mariani A., Testoni P.A., Canducci F., Comi G., Martinelli V., and Falcone M. 2017. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci. Adv. 3:e1700492.
Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., Guzzetta K.E., Jaggar M., Long-Smith C.M., Lyte J.M., Martin J.A., Molinero-Perez A., Moloney G., Morelli E., Morillas E., O’Connor R., Cruz-Pereira J.S., Peterson V.L., Rea K., Ritz N.L., Sherwin E., Spichak S., Teichman E.M., van de Wouw M., Ventura-Silva A.P., Wallace-Fitzsimons S.E., Hyland N., Clarke G., and Dinan T.G. 2019. The microbiota-gut-brain axis. Physiol. Rev. 99:1877–2013.
Cunningham E.T. Jr. and De Souza E.B. 1993. Interleukin 1 receptors in the brain and endocrine tissues. Immunol. Today. 14:171–176.
Dantzer R. 2018. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol. Rev. 98:477–504.
de Punder K. and Pruimboom L. 2015. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front. Immunol. 6:223.
DeCastro M., Nankova B.B., Shah P., Patel P., Mally P.V., Mishra R., and La Gamma E.F. 2005. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res. Mol. Brain Res. 142:28–38.
Desbonnet L., Garrett L., Clarke G., Bienenstock J., and Dinan T.G. 2008. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43:164–174.
Deverman B.E. and Patterson P.H. 2009. Cytokines and CNS development. Neuron. 64:61–78.
Dickerson F.B., Stallings C., Origoni A., Katsafanas E., Savage C.L., Schweinfurth L.A., Goga J., Khushalani S., and Yolken R.H. 2014. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: A randomized, placebo-controlled trial. Prim. Care Companion CNS Disord. 16(1):PCC.13m01579.
Donaldson G.P., Ladinsky M.S., Yu K.B., Sanders J.G., Yoo B.B., Chou W.C., Conner M.E., Earl A.M., Knight R., Bjorkman P.J., and Mazmanian S.K. 2018. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 360:795–800.
Dong Y. and Benveniste E.N. 2001. Immune function of astrocytes. Glia. 36:180–190.
Dubin P.J. and Kolls J.K. 2008. Th17 cytokines and mucosal immunity. Immunol. Rev. 226:160–171.
Elinav E., Strowig T., Kau A.L., Henao-Mejia J., Thaiss C.A., Booth C.J., Peaper D.R., Bertin J., Eisenbarth S.C., Gordon J.I., and Flavell R.A. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 145:745–757.
Emge J.R., Huynh K., Miller E.N., Kaur M., Reardon C., Barrett K.E., and Gareau M.G. 2016. Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol. 310:G989–G998.
Erny D., de Angelis A.L.H., Jaitin D., Wieghofer P., Staszewski O., David E., Keren-Shaul H., Mahlakoiv T., Jakobshagen K., Buch T., Schwierzeck V., Utermöhlen O., Chun E., Garrett W.S., McCoy K.D., Diefenbach A., Staeheli P., Stecher B., Amit I., and Prinz M. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18:965–977.
Farina C., Aloisi F., and Meinl E. 2007. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28:138–145.
Filipovic B.R. and Filipovic B.F. 2014. Psychiatric comorbidity in the treatment of patients with inflammatory bowel disease. World J. Gastroenterol. 20:3552–3563.
Frost G., Sleeth M.L., Sahuri-Arisoylu M., Lizarbe B., Cerdan S., Brody L., Anastasovska J., Ghourab S., Hankir M., Zhang S., Carling D., Swann J.R., Gibson G., Viardot A., Morrison D., Thomas E.L., and Bell J.D. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5:3611.
Fung T.C., Olson C.A., and Hsiao E.Y. 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20:145–155.
Gaboriau-Routhiau V., Rakotobe S., Lécuyer E., Mulder I., Lan A., Bridonneau C., Rochet V., Pisi A., De Paepe M., Brandi G., Eberl G., Snel J., Kelly D., and Cerf-Bensussan N. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 31:677–689.
Gareau M.G., Wine E., Rodrigues D.M., Cho J.H., Whary M.T., Philpott D.J., MacQueen G., and Sherman P.M. 2011. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 60:307–317.
Garrett W.S., Lord G.M., Punit S., Lugo-Villarino G., Mazmanian S.K., Ito S., Glickman J.N., and Glimcher L.H. 2007. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 131:33–45.
Goethel A., Turpin W., Rouquier S., Zanello G., Robertson S.J., Streutker C.J., Philpott D.J., and Croitoru K. 2019. Nod2 influences microbial resilience and susceptibility to colitis following antibiotic exposure. Mucosal. Immunol. 12:720–732.
Golubeva A.V., Joyce S.A., Moloney G., Burokas A., Sherwin E., Arboleya S., Flynn I., Khochanskiy D., Moya-Pérez A., Peterson V., Rea K., Murphy K., Makarova O., Buravkov S., Hyland N.P., Stanton C., Clarke G., Gahan C.G.M., Dinan T.G., and Cryan J.F. 2017. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine. 24:166–178.
Goshen I., Kreisel T., Ounallah-Saad H., Renbaum P., Zalzstein Y., Ben-Hur T., Levy-Lahad E., and Yirmiya R. 2007. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 32:1106–1115.
Griffin W.S.T., Stanley L.C., Ling C.H.E.N., White L., MacLeod V., Perrot L.J., White C.3., and Araoz C. 1989. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA. 86:7611–7615.
Hadden J.W., Hadden E.M., and Middleton E. Jr. 1970. Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell. Immunol. 1:583–595.
Haghikia A., Jörg S., Duscha A., Berg J., Manzel A., Waschbisch A., Hammer A., Lee D.H., May C., Wilck N., Balogh A., Ostermann A.I., Schebb N.H., Akkad D.A., Grohme D.A., Kleinewietfeld M., Kempa S., Thöne J., Demir S., Müller D.N., Gold R., and Linker R.A. 2015. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 43:817–829.
Hamada H., Hiroi T., Nishiyama Y., Takahashi H., Masunaga Y., Hachimura S., Kaminogawa S., Takahashi-Iwanaga H., Iwanaga T., Kiyono H., Yamamoto H., and Ishikawa H. 2002. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168:57.
Hansen C.H., Nielsen D.S., Kverka M., Zakostelska Z., Klimesova K., Hudcovic T., Tlaskalova-Hogenova H., and Hansen A.K. 2012. Patterns of early gut colonization shape future immune responses of the host. PLoS ONE. 7:e34043.
Hillman E.T., Lu H., Yao T., and Nakatsu C.H. 2017. Microbial ecology along the gastrointestinal tract. Microbes Environ. 32:300–313.
Hong S., Dissing-Olesen L., and Stevens B. 2016. New insights on the role of microglia in synaptic pruning in health and disease. Curr. Opin. Neurobiol. 36:128–134.
Hooper L.V., Littman D.R., and Macpherson A.J. 2012. Interactions between the microbiota and the immune system. Science. 336:1268–1273.
Hsiao E.Y. 2014. Gastrointestinal issues in autism spectrum disorder. Harvard Rev. Psychiatry. 22:104–111.
Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., Codelli J.A., Chow J., Reisman S.E., Petrosino J.F., Patterson P.H., and Mazmanian S.K. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 155:1451–1463.
Humann J., Mann B., Gao G., Moresco P., Ramahi J., Loh L.N., Farr A., Hu Y., Durick-Eder K., Fillon S.A., Smeyne R.J., and Tuomanen E.I. 2016. Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe. 19:388–399.
Huuskonen J., Suuronen T., Nuutinen T., Kyrylenko S., and Salminen A. 2004. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br. J. Pharmacol. 141:874–880.
Iadecola C. and Anrather J. 2011. The immunology of stroke: From mechanisms to translation. Nat. Med. 17:796–808.
Ivanov I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., Wei D., Goldfarb K.C., Santee C.A., Lynch S.V., Tanoue T., Imaoka A., Itoh K., Takeda K., Umesaki Y., Honda K., and Littman D.R. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 139:485–498.
Jensen C.J., Massie A., and De Keyser J. 2013. Immune players in the CNS: The astrocyte. J. Neuroimmune Pharmacol. 8:824–839.
Karamese M., Aydin H., Sengul E., Gelen V., Sevim C., Ustek D., and Karakus E. 2016. The immunostimulatory effect of lactic acid bacteria in a rat model. Iran. J. Immunol. 13:220–228.
Kawamoto S., Tran T.H., Maruya M., Suzuki K., Doi Y., Tsutsui Y., Kato L.M., and Fagarasan S. 2012. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science. 336:485–489.
Kawamoto S., Maruya M., Kato L.M., Suda W., Atarashi K., Doi Y., Tsutsui Y., Qin H., Honda K., Okada T., Hattori M., and Fagarasan S. 2014. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 41:152–165.
Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., Giuliani F., Arbour N., Becher B., and Prat A. 2007. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13:1173–1175.
Khakh B.S. and Sofroniew M.V. 2015. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18:942–952.
Kim M.H., Kang S.G., Park J.H., Yanagisawa M., and Kim C.H. 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 145:396.
Kim S., Kim H., Yim Y.S., Ha S., Atarashi K., Tan T.G., Longman R.S., Honda K., Littman D.R., Choi G.B., and Huh J.R. 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature. 549:528–532.
Kimura I., Inoue D., Maeda T., Hara T., Ichimura A., Miyauchi S., Kobayashi M., Hirasawa A., and Tsujimoto G. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA. 108:8030–8035.
Kinnebrew M.A. and Pamer E.G. 2012. Innate immune signaling in defense against intestinal microbes. Immunol. Rev. 245:113–131.
Kobayashi K.S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nuñez G., and Flavell R.A. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 307:731–734.
Kolb B. and Whishaw I.Q. 1998. Brain plasticity and behavior. Annu. Rev. Psychol. 49:43–64.
Korn T., Anderson A., Bettelli E., and Oukka M. 2007. The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. J. Neuroimmunol. 191:51–60.
Kwon O., Lee S., Kim J.H., Kim H., and Lee S.W. 2015. Altered gut microbiota composition in Rag1-deficient mice contributes to modulating homeostasis of hematopoietic stem and progenitor cells. Immune Netw. 15:252–259.
Lakhan S.E. and Kirchgessner A. 2010. Neuroinflammation in inflammatory bowel disease. J. Neuroinflammation. 7:37.
Lee Y.K., Menezes J.S., Umesaki Y., and Mazmanian S.K. 2011. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA. 108(Suppl. 1):4615–4622.
Levy O. 2007. Innate immunity of the newborn: Basic mechanisms and clinical correlates. Nat. Rev. Immunol. 7:379–390.
Ley R.E., Hamady M., Lozupone C., Turnbaugh P.J., Ramey R.R., Bircher J.S., Schlegel M.L., Tucker T.A., Schrenzel M.D., Knight R., and Gordon J.I. 2008a. Evolution of mammals and their gut microbes. Science. 320:1647–1651.
Ley R.E., Lozupone C.A., Hamady M., Knight R., and Gordon J.I. 2008b. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6:776–788.
Liang S., Wang T., Hu X., Luo J., Li W., Wu X., Duan Y., and Jin F. 2015. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 310:561–577.
Llopis M., Antolin M., Guarner F., Salas A., and Malagelada J.R. 2005. Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitronbenzene sulphonic acid. Gut. 54:955–959.
Llopis M., Antolin M., Carol M., Borruel N., Casellas F., Martinez C., Espín-Basany E., Guarner F., and Malagelada J.R. 2009. Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflamm. Bowel Dis. 15:275–283.
Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., and Harris T.H. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature. 523:337–341.
Luo J., Wang T., Liang S., Hu X., Li W., and Jin F. 2014. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci. China Life Sci. 57:327–335.
Maes M., Kubera M., Leunis J.C., and Berk M. 2012. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. J. Affect. Disord. 141:55–62.
Mamantopoulos M., Ronchi F., Van Hauwermeiren F., Vieira-Silva S., Yilmaz B., Martens L., Saeys Y., Drexler S.K., Yazdi A.S., Raes J., and Lamkanfi M. 2017. Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity. 47:339–348.
Martin, C.R., and Mayer, E.A. 2017. Gut-brain axis and behavior. In 88th Nestlé Nutrition Institute Workshop, Playa del Carmen, Mexico, September 2016. Vol. 88, pp. 45–53.
Martinez K.A. II, Romano-Keeler J., Zackular J.P., Moore D.J., Brucker R.M., Hooper C., Meng S., Brown N., Mallal S., Reese J., Aronoff D.M., Shin H., Dominguez-Bello M.G., and Weitkamp J.H. 2018. Bacterial DNA is present in the fetal intestine and overlaps with that in the placenta in mice. PLoS ONE. 13:e0197439.
Matcovitch-Natan O., Winter D.R., Giladi A., Aguilar S.V., Spinrad A., Sarrazin S., Ben-Yehuda H., David E., González F.Z., and Perrin P. 2016. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 353:aad8670.
Mayer E.A., Savidge T., and Shulman R.J. 2014. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 146:1500–1512.
Mazmanian S.K., Liu C.H., Tzianabos A.O., and Kasper D.L. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 122:107–118.
McCarthy J., O’Mahony L., O’Callaghan L., Sheil B., Vaughan E.E., Fitzsimons N., Fitzgibbon J., O’Sullivan G.C., Kiely B., Collins J.K., and Shanahan F. 2003. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut. 52:975–980.
McFarland L.V., Evans C.T., and Goldstein E.J.C. 2018. Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Front. Med. 5:124.
Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D., Nejdi A., Bisson J.F., Rougeot C., Pichelin M., Cazaubiel M., and Cazaubiel J.M. 2011a. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105:755–764.
Messaoudi M., Violle N., Bisson J.F., Desor D., Javelot H., and Rougeot C. 2011b. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2:256–261.
Milo L.A., Reardon K.A., and Tappenden K.A. 2002. Effects of short-chain fatty acid-supplemented total parenteral nutrition on intestinal pro-inflammatory cytokine abundance. Dig. Dis. Sci. 47:2049–2055.
Mohammadi A.A., Jazayeri S., Khosravi-Darani K., Solati Z., Mohammadpour N., Asemi Z., Adab Z., Djalali M., Tehrani-Doost M., Hosseini M., and Eghtesadi S. 2016. The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: A randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr. Neurosci. 19:387–395.
Mohle L., Mattei D., Heimesaat M.M., Bereswill S., Fischer A., Alutis M., French T., Hambardzumyan D., Matzinger P., Dunay I.R., and Wolf S.A. 2016. Ly6C(hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15:1945–1956.
Morelli L. and Capurso L. 2012. FAO/WHO guidelines on probiotics: 10 years later. J. Clin. Gastroenterol. 46:S1–S2.
Nakajima A., Vogelzang A., Maruya M., Miyajima M., Murata M., Son A., Kuwahara T., Tsuruyama T., Yamada S., Matsuura M., and Nakase H. 2018. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215:2019–2034.
Nayak D., Roth T.L., and McGavern D.B. 2014. Microglia development and function. Annu. Rev. Immunol. 32:367–402.
Ni J., Wu G.D., Albenberg L., and Tomov V.T. 2017. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14:573–584.
Noack H., Lövdén M., and Schmiedek F. 2014. On the validity and generality of transfer effects in cognitive training research. Psychol. Res. 78:773–789.
Ogbonnaya E.S., Clarke G., Shanahan F., Dinan T.G., Cryan J.F., and O’Leary O.F. 2015. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatry. 78:e7–e9.
Ohland C.L., Kish L., Bell H., Thiesen A., Hotte N., Pankiv E., and Madsen K.L. 2013. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology. 38:1738–1747.
Parfrey L.W., Walters W.A., and Knight R. 2011. Microbial eukaryotes in the human microbiome: Ecology, evolution, and future directions. Front. Microbiol. 2:153–153.
Perez-Muñoz M.E., Arrieta M.-C., Ramer-Tait A.E., and Walter J. 2017. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome. 5:48–48.
Pert C.B., Ruff M.R., Weber R.J., and Herkenham M. 1985. Neuropeptides and their receptors: A psychosomatic network. J. Immunol. 135:820s–826s.
PrabhuDas M., Adkins B., Gans H., King C., Levy O., Ramilo O., and Siegrist C.A. 2011. Challenges in infant immunity: Implications for responses to infection and vaccines. Nat. Immunol. 12:189–194.
Prinz M., Erny D., and Hagemeyer N. 2017. Ontogeny and homeostasis of CNS myeloid cells. Nat. Immunol. 18:385–392.
Procaccini C., Pucino V., De Rosa V., Marone G., and Matarese G. 2014. Neuro-endocrine networks controlling immune system in health and disease. Front. Immunol. 5:143.
Proietti M., Cornacchione V., Jost T.R., Romagnani A., Faliti C.E., Perruzza L., Rigoni R., Radaelli E., Caprioli F., Preziuso S., and Brannetti B. 2014. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer’s patches to promote host-microbiota mutualism. Immunity. 41:789–801.
Proietti M., Perruzza L., Scribano D., Pellegrini G., D’Antuono R., Strati F., Raffaelli M., Gonzalez S.F., Thelen M., Hardt W.D., and Slack E. 2019. ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nat. Commun. 10:1–11.
Pusceddu M., Barboza M., Keogh C.E., Schneider M., Stokes P., Sladek J.A., Kim H.J.D., Torres-Fuentes C., Goldfild L.R., Gillis S.E., and Brust-Mascher I. 2019. Nod-like receptors are critical for gut-brain axis signaling in mice. J. Physiol. 597(24):5777–5797.
Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., and Medzhitov R. 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 118:229–241.
Rao A.V., Bested A.C., Beaulne T.M., Katzman M.A., Iorio C., Berardi J.M., and Logan A.C. 2009. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 1:6.
Rao R.K. and Samak G. 2013. Protection and restitution of gut barrier by probiotics: Nutritional and clinical implications. Curr. Nutr. Food Sci. 9:99–107.
Rea K., Dinan T.G., and Cryan J.F. 2016. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress. 4:23–33.
Rhee S.H., Pothoulakis C., and Mayer E.A. 2009. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol. 6:306–314.
Rivera-Chavez F., Zhang L.F., Faber F., Lopez C.A., Byndloss M.X., Olsan E.E., Xu G., Velazquez E.M., Lebrilla C.B., Winter S.E., and Bäumler A.J. 2016. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe. 19:443–454.
Robertson S.J., Zhou J.Y., Geddes K., Rubino S.J., Cho J.H., Girardin S.E., and Philpott D.J. 2013. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes. 4:222–231.
Robertson S.J., Goethel A., Girardin S.E., and Philpott D.J. 2018. Innate immune influences on the gut microbiome: Lessons from mouse models. Trends Immunol. 39:992–1004.
Romijn J.A., Corssmit E.P., Havekes L.M., and Pijl H. 2008. Gut-brain axis. Curr. Opin. Clin. Nutr. Metab. Care. 11:518–521.
Rook G.A., Raison C.L., and Lowry C.A. 2014. Microbiota, immunoregulatory old friends and psychiatric disorders. Adv. Exp. Med. Biol. 817:319–356.
Ross F.M., Allan S.M., Rothwell N.J., and Verkhratsky A. 2003. A dual role for interleukin-1 in LTP in mouse hippocampal slices. J. Neuroimmunol. 144:61–67.
Rothhammer V. and Quintana F.J. 2019. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19:184–197.
Rothhammer V., Mascanfroni I.D., Bunse L., Takenaka M.C., Kenison J.E., Mayo L., Chao C.C., Patel B., Yan R., Blain M., Alvarez J.I., Kébir H., Anandasabapathy N., Izquierdo G., Jung S., Obholzer N., Pochet N., Clish C.B., Prinz M., Prat A., Antel J., and Quintana F.J. 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22:586–597.
Rothhammer V., Borucki D.M., Tjon E.C., Takenaka M.C., Chao C.C., Ardura-Fabregat A., de Lima K.A., Gutiérrez-Vázquez C., Hewson P., Staszewski O., Blain M., Healy L., Neziraj T., Borio M., Wheeler M., Lionel Dragin L., Laplaud D.A., Antel J., Ivan Alvarez J., Prinz M., and Quintana F.J. 2018. Microglial control of astrocytes in response to microbial metabolites. Nature. 557:724–728.
Round J.L., Lee S.M., Li J., Tran G., Jabri B., Chatila T.A., and Mazmanian S.K. 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 332:974–977.
Ryu J.H., Kim S.H., Lee H.Y., Bai J.Y., Nam Y.D., Bae J.W., Lee D.G., Shin S.C., Ha E.M., and Lee W.J. 2008. Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science. 319:777–782.
Salvo Romero E., Alonso Cotoner C., Pardo Camacho C., Casado Bedmar M., and Vicario M. 2015. The intestinal barrier function and its involvement in digestive disease. Rev. Esp. Enferm. Dig. 107:686–696.
Sampson T.R. and Mazmanian S.K. 2015. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 17:565–576.
Sanctuary M.R., Kain J.N., Chen S.Y., Kalanetra K., Lemay D.G., Rose D.R., Yang H.T., Tancredi D.J., German J.B., Slupsky C.M., and Ashwood P. 2019. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS ONE. 14:e0210064.
Savignac H.M., Tramullas M., Kiely B., Dinan T.G., and Cryan J.F. 2015. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 287:59–72.
Schafer D.P. and Stevens B. 2015. Microglia function in central nervous system development and plasticity. Cold Spring Harb. Perspect. Biol. 7:a020545.
Schwab C., Berry D., Rauch I., Rennisch I., Ramesmayer J., Hainzl E., Heider S., Decker T., Kenner L., Müller M., Strobl B., Wagner M., Schleper C., Loy A., and Urich T. 2014. Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME J. 8:1101–1114.
Sgritta M., Dooling S.W., Buffington S.A., Momin E.N., Francis M.B., Britton R.A., and Costa-Mattioli M. 2019. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 101:246–259.
Shanahan M.T., Carroll I.M., Grossniklaus E., White A., von Furstenberg R.J., Barner R., Fodor A.A., Henning S.J., Sartor R.B., and Gulati A.S. 2014. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut. 63:903–910.
Shanks N., Windle R.J., Perks P.A., Harbuz M.S., Jessop D.S., Ingram C.D., and Lightman S.L. 2000. Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc. Natl. Acad. Sci. USA. 97:5645–5650.
Sharkey K.A. and Mawe G.M. 2002. Neuroimmune and epithelial interactions in intestinal inflammation. Curr. Opin. Pharmacol. 2:669–677.
Shulzhenko N., Morgun A., Hsiao W., Battle M., Yao M., Gavrilova O., Orandle M., Mayer L., Macpherson A.J., McCoy K.D., and Fraser-Liggett C. 2011. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 17:1585–1593.
Siegrist C.A. 2001. Neonatal and early life vaccinology. Vaccine. 19:3331–3346.
Singh P.K., Chopra K., Kuhad A., and Kaur I.P. 2012. Role of Lactobacillus acidophilus loaded floating beads in chronic fatigue syndrome: Behavioral and biochemical evidences. Neurogastroenterol. Motil. 24:366–e170.
Slack E., Hapfelmeier S., Stecher B., Velykoredko Y., Stoel M., Lawson M.A., Geuking M.B., Beutler B., Tedder T.F., Hardt W.D., and Bercik P. 2009. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science. 325:617–620.
Smith K., McCoy K.D., and Macpherson A.J. 2007. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 19:59–69.
Smith P.A. 2015. The tantalizing links between gut microbes and the brain. Nature. 526:312–314.
Sonnenburg J.L., Angenent L.T., and Gordon J.I. 2004. Getting a grip on things: How do communities of bacterial symbionts become established in our intestine? Nat. Immunol. 5:569–573.
Spulber S., Mateos L., Oprica M., Cedazo-Minguez A., Bartfai T., Winblad B., and Schultzberg M. 2009. Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. J. Neuroimmunol. 208:46–53.
Stanley L.C., Mrak R.E., Woody R.C., Perrot L.J., Zhang S., Marshak D.R., Nelson S.J., and Griffin W.S.T. 1994. Glial cytokines as neuropathogenic factors in HIV infection: Pathogenic similarities to Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 53:231–238.
Steenbergen L., Sellaro R., van Hemert S., Bosch J.A., and Colzato L.S. 2015. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 48:258–264.
Strandwitz P. 2018. Neurotransmitter modulation by the gut microbiota. Brain Res. 1693:128–133.
Theis K.R., Romero R., Winters A.D., Greenberg J.M., Gomez-Lopez N., Alhousseini A., Bieda J., Maymon E., Pacora P., Fettweis J.M., and Buck G.A. 2019. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstetr. Gynecol. 220:267.e1–267.e39.
Tremblay M.-È., Stevens B., Sierra A., Wake H., Bessis A., and Nimmerjahn A. 2011. The role of microglia in the healthy brain. J. Neurosci. 31:16064–16069.
Urakubo A., Jarskog L.F., Lieberman J.A., and Gilmore J.H. 2001. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr. Res. 47:27–36.
Vaghef-Mehrabany E., Alipour B., Homayouni-Rad A., Sharif S.K., Asghari-Jafarabadi M., and Zavvari S. 2014. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition. 30:430–435.
Vaishnava S., Behrendt C.L., Ismail A.S., Eckmann L., and Hooper L.V. 2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA. 105:20858–20863.
van De Sande M.M., van Buul V.J., and Brouns F.J. 2014. Autism and nutrition: The role of the gut-brain axis. Nutr. Res. Rev. 27:199–214.
van Langenberg D.R., Yelland G.W., Robinson S.R., and Gibson P.R. 2017. Cognitive impairment in Crohn’s disease is associated with systemic inflammation, symptom burden and sleep disturbance. United European Gastroenternol. J. 5:579–587.
Vijay-Kumar M., Aitken J.D., Carvalho F.A., Cullender T.C., Mwangi S., Srinivasan S., Sitaraman S.V., Knight R., Ley R.E., and Gewirtz A.T. 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 328:228–231.
Vuong H.E. and Hsiao E.Y. 2017. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry. 81:411–423.
Walker L.S., Garber J., Smith C.A., Van Slyke D.A., and Claar R.L. 2001. The relation of daily stressors to somatic and emotional symptoms in children with and without recurrent abdominal pain. J. Consult. Clin. Psychol. 69:85–91.
Wang H., Lee I.S., Braun C., and Enck P. 2016. Effect of probiotics on central nervous system functions in animals and humans: A systematic review. J. Neurogastroenterol. Motil. 22:589–605.
Weltens N., Iven J., Van Oudenhove L., and Kano M. 2018. The gut-brain axis in health neuroscience: Implications for functional gastrointestinal disorders and appetite regulation. Ann. N.Y. Acad. Sci. 1428:129–150.
Williamson L.L., Sholar P.W., Mistry R.S., Smith S.H., and Bilbo S.D. 2011. Microglia and memory: Modulation by early-life infection. J. Neurosci. 31:15511–15521.
Yelin I., Flett K.B., Merakou C., Mehrotra P., Stam J., Snesrud E., Hinkle M., Lesho E., McGann P., McAdam A.J., and Sandora T.J. 2019. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat. Med. 25:1728–1732.
Yoo B.B. and Mazmanian S.K. 2017. The enteric network: Interactions between the immune and nervous systems of the gut. Immunity. 46:910–926.
Zeng Z., Surewaard B.G.J., Wong C.H.Y., Guettler C., Petri B., Burkhard R., Wyss M., Le Moual H., Devinney R., Thompson G.C., Blackwood J., Joffe A.R., McCoy K.D., Jenne C.N., and Kubes P. 2018. Sex-hormone-driven innate antibodies protect females and infants against EPEC infection. Nat. Immunol. 19:1100–1111.
Zijlmans M.A., Korpela K., Riksen-Walraven J.M., de Vos W.M., and de Weerth C. 2015. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 53:233–245.
Zmora N., Zilberman-Schapira G., Suez J., Mor U., Dori-Bachash M., Bashiardes S., Kotler E., Zur M., Regev-Lehavi D., Brik R.B.Z., Federici S., Cohen Y., Linevsky R., Rothschild D., Moor A.E., Ben-Moshe S., Harmelin A., Itzkovitz S., Maharshak N., Shibolet O., Shapiro H., Pevsner-Fischer M., Sharon I., Halpern Z., Segal E., and Elinav E. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 174:1388–1405.
Zonis S., Pechnick R.N., Ljubimov V.A., Mahgerefteh M., Wawrowsky K., Michelsen K.S., and Chesnokova V. 2015. Chronic intestinal inflammation alters hippocampal neurogenesis. J. Neuroinflammat. 12:65.

Information & Authors

Information

Published In

cover image LymphoSign Journal
LymphoSign Journal
Volume 7Number 1March 2020
Pages: 1 - 23

History

Received: 18 November 2019
Accepted: 17 January 2020
Accepted manuscript online: 27 January 2020

Authors

Affiliations

Eloisa Salvo-Romero
Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
Patricia Stokes
Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
Mélanie G. Gareau [email protected]
Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to LymphoSign Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media